skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wilson, D J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explore the use of a spatial mode sorter to image a nanomechanical resonator, with the goal of studying the quantum limits of active imaging and extending the toolbox for optomechanical force sensing. In our experiment, we reflect a Gaussian laser beam from a vibrating nanoribbon and pass the reflected beam through a commercial spatial mode demultiplexer (Cailabs Proteus). The intensity in each demultiplexed channel depends on the mechanical modeshapes and encodes information about their displacement amplitudes. As a concrete demonstration, we monitor the angular displacement of the ribbon’s fundamental torsion mode by illuminating in the fundamental Hermite-Gauss mode ( HG 00 ) and reading out in the HG 10 mode. We show that this technique permits readout of the ribbon’s torsional vibration with a precision near the quantum limit. Our results highlight new opportunities at the interface of quantum imaging and quantum optomechanics. 
    more » « less
  2. The optical lever is a precision displacement sensor with broad applications. In principle, it can track the motion of a mechanical oscillator with added noise at the standard quantum limit (SQL); however, demonstrating this performance requires an oscillator with exceptionally high torque sensitivity or, equivalently, zero-point angular displacement spectral density. Here, we describe optical lever measurements on nanoribbons possessing torsion modes with torque sensitivities of and zero-point displacement spectral densities of . By compensating for aberrations and leveraging immunity to classical intensity noise, we realize angular displacement measurements with imprecisions 20 dB below the SQL and demonstrate feedback cooling, using a position-modulated laser beam as a torque actuator, from room temperature to Si3N4phonons. Our study signals the potential for a new class of torsional quantum optomechanics. 
    more » « less
  3. Membrane-based cavity optomechanical systems have been widely successful; however, their chip-scale integration remains a significant challenge. Here we present a solution based on metasurface design. Specifically, by non-periodic photonic crystal patterning of a Si3N4membrane, we realize a suspended metamirror with a finite focal length, enabling formation of a stable optical cavity with a plane end-mirror. We present simulation, fabrication, and characterization of the metamirror using both free-space and cavity-based measurements, demonstrating reflectivities as high as 99% and cavity finesse as high as 600. The mirror radius of curvature (∼30cm) is inferred from the cavity mode spectrum. In combination with phononic engineering, focusing membrane mirrors offer a route towards high-cooperativity, vertically integrated cavity optomechanical systems with applications ranging from precision force sensing to hybrid quantum transduction. 
    more » « less
  4. The high-energy radiative output, from the X-ray to the ultraviolet, of exoplanet host stars drives photochemical reactions and mass loss in the upper regions of planetary atmospheres. In order to place constraints on the atmospheric properties of the three closest terrestrial exoplanets transiting M dwarfs, we observe the high-energy spectra of the host stars LTT 1445A and GJ 486 in the X-ray withXMM-NewtonandChandraand in the ultraviolet with HST/COS and STIS. We combine these observations with estimates of extreme-ultraviolet flux, reconstructions of the Lyαlines, and stellar models at optical and infrared wavelengths to produce panchromatic spectra from 1 Å to 20 µm for each star. While LTT 1445Ab, LTT 1445Ac, and GJ 486b do not possess primordial hydrogen-dominated atmospheres, we calculate that they are able to retain pure CO2atmospheres if starting with 10, 15, and 50% of Earth’s total CO2budget, respectively, in the presence of their host stars’ stellar wind. We use age-activity relationships to place lower limits of 2.2 and 6.6 Gyr on the ages of the host stars LTT 1445A and GJ 486. Despite both LTT 1445A and GJ 486 appearing inactive at optical wavelengths, we detect flares at ultraviolet and X-ray wavelengths for both stars. In particular, GJ 486 exhibits two far-ultraviolet flares with absolute energies of 1029.5and 1030.1erg (equivalent durations of 4357 ± 96 and 19 724 ± 169 s) occurring 3 h apart. Based on the timing of the observations, we suggest that these high-energy flares are related and indicative of heightened flaring activity that lasts for a period of days, but our interpretations are limited by sparse time-sampling. Consistent high-energy monitoring is needed to determine the duration and extent of high-energy activity on individual M dwarfs and the population as a whole. 
    more » « less
  5. null (Ed.)
  6. This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of $$140~fb^{−1}$$ of proton-proton collisions at $$\sqrt{s}=13$$~TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetime 
    more » « less