Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We explore the use of a spatial mode sorter to image a nanomechanical resonator, with the goal of studying the quantum limits of active imaging and extending the toolbox for optomechanical force sensing. In our experiment, we reflect a Gaussian laser beam from a vibrating nanoribbon and pass the reflected beam through a commercial spatial mode demultiplexer (Cailabs Proteus). The intensity in each demultiplexed channel depends on the mechanical modeshapes and encodes information about their displacement amplitudes. As a concrete demonstration, we monitor the angular displacement of the ribbon’s fundamental torsion mode by illuminating in the fundamental Hermite-Gauss mode ( ) and reading out in the mode. We show that this technique permits readout of the ribbon’s torsional vibration with a precision near the quantum limit. Our results highlight new opportunities at the interface of quantum imaging and quantum optomechanics.more » « lessFree, publicly-accessible full text available August 1, 2026
-
The high-energy radiative output, from the X-ray to the ultraviolet, of exoplanet host stars drives photochemical reactions and mass loss in the upper regions of planetary atmospheres. In order to place constraints on the atmospheric properties of the three closest terrestrial exoplanets transiting M dwarfs, we observe the high-energy spectra of the host stars LTT 1445A and GJ 486 in the X-ray withXMM-NewtonandChandraand in the ultraviolet with HST/COS and STIS. We combine these observations with estimates of extreme-ultraviolet flux, reconstructions of the Lyαlines, and stellar models at optical and infrared wavelengths to produce panchromatic spectra from 1 Å to 20 µm for each star. While LTT 1445Ab, LTT 1445Ac, and GJ 486b do not possess primordial hydrogen-dominated atmospheres, we calculate that they are able to retain pure CO2atmospheres if starting with 10, 15, and 50% of Earth’s total CO2budget, respectively, in the presence of their host stars’ stellar wind. We use age-activity relationships to place lower limits of 2.2 and 6.6 Gyr on the ages of the host stars LTT 1445A and GJ 486. Despite both LTT 1445A and GJ 486 appearing inactive at optical wavelengths, we detect flares at ultraviolet and X-ray wavelengths for both stars. In particular, GJ 486 exhibits two far-ultraviolet flares with absolute energies of 1029.5and 1030.1erg (equivalent durations of 4357 ± 96 and 19 724 ± 169 s) occurring 3 h apart. Based on the timing of the observations, we suggest that these high-energy flares are related and indicative of heightened flaring activity that lasts for a period of days, but our interpretations are limited by sparse time-sampling. Consistent high-energy monitoring is needed to determine the duration and extent of high-energy activity on individual M dwarfs and the population as a whole.more » « less
-
This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of $$140~fb^{−1}$$ of proton-proton collisions at $$\sqrt{s}=13$$~TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetimemore » « lessFree, publicly-accessible full text available July 1, 2026
-
Top-quark pair production is observed in lead–lead ( ) collisions at at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of . Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is , with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe. © 2025 CERN, for the ATLAS Collaboration2025CERNmore » « lessFree, publicly-accessible full text available April 1, 2026
-
A<sc>bstract</sc> This paper presents a search for supersymmetric particles in models with highly compressed mass spectra, in events consistent with being produced through vector boson fusion. The search uses 140 fb−1of proton-proton collision data at$$ \sqrt{s} $$ = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider. Events containing at least two jets with a large gap in pseudorapidity, large missing transverse momentum, and no reconstructed leptons are selected. A boosted decision tree is used to separate events consistent with the production of supersymmetric particles from those due to Standard Model backgrounds. The data are found to be consistent with Standard Model predictions. The results are interpreted using simplified models ofR-parity-conserving supersymmetry in which the lightest supersymmetric partner is a bino-like neutralino with a mass similar to that of the lightest chargino and second-to-lightest neutralino, both of which are wino-like. Lower limits at 95% confidence level on the masses of next-to-lightest supersymmetric partners in this simplified model are established between 117 and 120 GeV when the lightest supersymmetric partners are within 1 GeV in mass.more » « less
An official website of the United States government
